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Abstract

Keeping terms up to second order in the micro motion of two ions stored
in a Paul trap we derive an improved two-ion pseudo potential which pre-
dicts crystal alignment effects that go beyond a standard pseudo-potential
analysis and are supported by numerical evidence. The dynamical predic-
tions can be checked experimentally with existing set-ups.

The Paul trap, originally designed as a practical tool for the
three-dimensional confinement of charged particles [1, 2]
has recently acquired the status of a micro lab for the inves-
tigation of nonlinear dynamics [3-8] and quantum chaos
[9]. One of the most successful tools for discussing the
dynamics of charged particles in a Paul trap is the pseudo-
potential approximation [10]. The pseudo potential is
obtained by averaging over the fast components of the ion
motion, the so-called micro motion. The averaging pro-
cedure itself is generally applicable in nonlinear dynamics
and is outlined in standard textbooks (see, e.g., [11-13]).
The purpose of this paper is to refine and to extend this
procedure to obtain an improved version of the two-ion
pseudo potential by including terms up to second order in
the micro motion of the trapped ions.

The standard pseudo potential U¥}, currently used in the
literature [6, 14-16] and explicitly derived below is a com-
posite consisting of the sum of the pseudo potentials of the
individual ions and their mutual Coulomb interaction. New
constants of the motion were found for the pseudo potential
[6, 17]. Even the manifestations of classical chaos on the
quantum level were analyzed on the basis of the standard
pseudo potential [9]. But the question arises, how good this
potential really is, and whether there are effects in the
two-ion Paul trap which cannot be predicted on the basis of
the standard pseudo potential.

In this note we derive an improved two-ion pseudo poten-
tial which predicts crystal alignment effects not contained in

_the standard pseudo potential US),. Therefore, while for
" some applications the potential U§}, may be sufficiently

accurate, it shows its limitations by failing to predict some
basic two-ion phenomena. If the standard potential U} is
replaced by an improved pseudo potential to capture these
phenomena, it raises the question what happens to the
exactly integrable cases of U‘:} , which were recently dis-
cussed intensively in the literature [14-18]. This is indeed a

promising avenue for further research. Work on this topic is
currently in progress.

On our way to the improved two-ion pseudo potential we
will perform an even more ambitious task. We will derive a
pseudo potential in full generality for the following set of
two coupled dynamical equations

mX = —Uy(X, Z) — kyx X cos (ot)
mZ = —UyX, Z) — kz Z cos (wt), ey

where Uy = 8U/8X, U, = dU/0Z and ky, k; are constants.
Since there are no restrictions on U(X, Z) the pseudo poten-
tial derived from eq. (1) is applicable to a wide class of
dynamical systems, the Paul trap being but a special case.
The analysis of eq. (1) proceeds according to a method sug-
gested by Kapiza [11]. Assuming that the cos (wt) terms in
eq. (1) are rapidly oscillating compared to the motion in the
potential U alone, we split X() and Z(z) into a slowly and a
rapidly varying component according to

X(t) = x(t) + £ cos (wt)
Z(t) = z(t) + n cos (wt), 2

where ¢ and # are the micro-motion amplitudes in the x and
2 direction, respectively. The micro-motion amplitudes are
assumed to be constant during a cycle of the driving field,
and change only slowly on the time scale of x and z, respec-
tively. We will now assume that the micro-motion ampli-
tudes are small, such that U(X, Z) can be expanded up to
second order in the micro-motion amplitudes according to

UX, Z) = U(x, 2) + Uy(x, 2)& + U,(x, 2 + 3UL(x, 2)&?
+ U(x, 2)n + U (x, s 3)

where U, U,, ... is shorthand for 6U/0x, 8U/0z, ..., respec-
tively. Using eq. (3) in eq. (1) and equating cos (et) terms
results in the following set of coupled linear equations for ¢
and 5

—mw?é = ~Ugl— Ugn— k. x
—mw*n=—Ug,&—Uz,n—k.z (4)
Solving for & and n we obtain

& =[mo? — Uk, x + Ugk,2)/A

n=[Uskex + (mo? — Uk, 2)/A, )

Physica Scripta T59



430 M. G. Moore and R. Bliimel

where A = (mw? — U )mw?* — U,,) — UZ,. Averaging the
equations of motion (1) over one cycle of the driving field,
we obtain

mx = — Ux - %ézUxxx - %énUxxz - %’72 szz - é—kx:

mi= — U: -'%ézUxxz - %inUzzx - %rlezzz - %kz n. (6)

It can be verified by direct differentiation that the above
equations of motion can be derived from the potential

™

We will now show that the equations of motion of two
identical ions in-a Paul trap are indeed a special case of eq.
(1). Denoting by r; and r, the positions of the two ions in
the trap, we introduce their relative separation p =r, —r,
and the position of the center of mass R = (r, + r,)/2. In the
case of identical ions it was shown by many authors that the
Paul trap dynamics is separable in p and R (see, e.g, [3]).
The center of mass R satisfies a simple single particle
Mathieu equation [19] and is of no dynamical interest.
Stable trapping is achieved inside the Mathieu stability
region [ 1, 2] shown as the regions framed by the full lines in
Fig. 1. The interesting dynamics happens in the relative
motion p = (X, Y, Z) of the two ions. In the presence of
laser cooling with a well-aligned laser the z component of
the angular momentum is “frozen out”. Then, due to the
axial symmetry of the trap, the y axis of the coordinate
system can always be chosen such that Y = 0 for all time
and the X and Z components of p suffice for the description.
In suitable dimensionless units [8] the equations of motion
are given by

X = —[a+2gcos (21X + X/p*
7 = 2[a+ 2q cos 2]Z + Z/p%, ®)

L7eff(x’ Z) = U(xa Z) + %kx xé(xa Z) + %—‘kz Zn(xy Z)‘

where p = (X? + Z*)Y/2. The set (8) is obtained from eq. (1)
withm=1, 0w =2k, =2q k.= —4q and

Ulx, z) = ax?/2 — ax* + 1/r, 9

where r = (x? 4 z%)!/2,

In order to calculate the potential U, explicitly, we need
the partial derivatives of U. They are easily calculated
resulting in

U,=ax —x/r}, U,= —2az—z/r’,

z

U, =a— 1/ +3x%r, U, =3xz/r’,

U, = —2a— 1/ +32%/r". (10)

Using these expressions, the pseudo potential (7) is given
explicitly by

1
+ tax? — az* + N/D,

Uy =~ (11)
where

N = Gg*x* — 12¢*x*z%/r® + 4Hg*2?,

D = GH — 9x%2?/rt° (12)
and

G =4+ 2a+ (x* —229)/r,

H=4—a+(z? - 2x%)/r" (13)
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Since the analytical structure of eq. (11) is complicated, we
discuss two approximations to eq. (11). The standard
pseudo potential U¥), is obtained by assuming a, ¢ < 1.
This results in

Ugly =~ + 21X’ + 34277, (14)
where u, = (a + ¢*/2)'* and u, = [2q* — a)]*/* are the
dimensionless single ion pseudo oscillator frequencies in x
and z direction, respectively. Especially for very small g and
g the standard pseudo potential U}, captures many of the
important features of two-ion dynamics and crystallization
[3-6, 9, 20-23] and was the basis of many investigations in
the current literature (see, e.g., {6, 9, 16]).

A better approximation to eq. {(11) can be obtained by
expanding the N/D term in eq. (11) up to first order in
1/length. The result is

2¢° +4a—a* , 2¢* —2a—a*

Oy =+ + o
ST T a—ag Tra DT

y [ 2x* 274 417 + 2a — a)x?2?
G-t orar G-aCra | B

The potential (15) looks much more complicated than the
standard pseudo potential (14). The question is whether
eq. (15) is just simply more accurate than eq. (14) or whether
eq. (15) predicts qualitatively new physics not contained in
eq. (14). The latter is the case since eq. (15) predicts a qualit-
atively new regime of crystal orientations that cannot be
obtained from eq. (14).

If a two-ion crystal is cooled to its minimal energy con-
figuration, its slow coordinates x and z will be found to cor-
respond closely to a minimum in the pseudo potential. In
other words, the pseudo-potential minima determine the
crystal equilibrium configurations.

In order to find the possible crystal orientations accord-
ing to the standard pseudo potential (14), all we have to do
is to solve the coupled equations dUS),(x, z)/d(x, z) = 0.
They are given explicitly by

U, 1

ous, 1
—efi=[—;+uf}z=0. (16)

0z
In order to check whether a solution of eq. (16) indeed cor-
responds to a minimum, we also need the set of second
derivatives of US},. They are given by

Fun, 22, P e
ox? 7 ' 9x0z s’
o2UL), 2xXP—x*
=Tl (17

Because of the Coulomb singularity, (x =0, z = 0) is not a
solution of eq. (16). This leaves three cases:

) x=0,z#0

In this case we have z = u; /3. The mixed derivative in eq.
(17) vanishes identically in this case. The second derivative
with respect to z equals 3u? and is positive. The second
derivative with respect to x yields u2 — u2. It is positive and
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Fig. 1. Orientation regions for two-ion crystals in a Paul trap predicted by
the standard pseudo potential U),. The full lines frame the single ion
Mathieu stability region. The dashed lines show the analyticafly deter-
mined border-line function f,. between regions A (z alignment) and region
C (x alignment).

corresponds to a minimum for a > g*/2. This condition
defines. a whole region (denoted by A in Fig. 1) inside the
Mathieu stability diagram [1, 2]. In region A the two-ion
crystal is aligned with the z axis.

(i) x#0,z=0

This case is analogous to case (i). The mixed derivative van-
ishes, the second derivative with respect to x is positive and
the presence of a minimum requires u? — u2 >0 which
implies a < ¢*/2. The corresponding region in the Mathieu
stability diagram is denoted by C (see Fig. 1). In region C
the crystal is aligned to the x axis.

(i) x#£0,z#0

In this case, we must have simultaneously r® = 1/u? and
#3 = 1/u2. This is possible only for u, = p., ie., in case the
potential (14) is spherical. This condition yields a = ¢*/2
and forms the border-line between regions A and C. We
denote the border-line function by ¢ =/f4la)= \/—Z—a
(dashed line in Fig. 1). Points on f4c do not correspond to
minima since the matrix of second derivatives is not posi-
tively definite.

As a result of this analysis we obtain that for a generic
choice of control parameters a and g the two-ion crystal can
be found either aligned with the z axis or aligned with the x
axis. Except for a set of zero area of a and q values (ie., for
points that satisfy f4c) there is no third possibility. This case,
however, is “soft” and provides no angular restoring force.

We will now investigate crystal orientations predicted by
the potential (15). This time the analysis is somewhat more
difficult but can still be performed analytically with no
approximations. We will see below that the potential (15)
predicts that the zero area border-line g = f,{a) widens to a
finite area located between A and C and denoted by B.
Therefore, there are “real” minima in region B which corre-
spond to nontrivial crystal orientations with an angular res-
toring force. In order to calculate the border-lines f,z and
fsc between the three orientation regions we will first look
for minima on the x and z axis, respectively, and then deter-
mine where those minima, as a function of a and ¢ lose

stability. The onset of instability marks the borders between
A and B, and B and C, respectively.
A minimum on the x axis is given by

U, /(x,z2=0)
effm 2= 7 ()
ox ' (18)

This equation can be solved analytically and yields
2 + (4 — a)* 173
MU el : (19)
(2¢* + 4a — a*)(4 — a)
This minimum loses stability in z direction at
62Ueff(x, z = 0)
oz?
_4—da—20 1
2+a x3
104% 8(17 + 2a — a®)q®
1 = 0.
X[ e @-atrar

Using eq. (19) in eq. (20), we see that eq. (20) becomes a
quadratic equation in g* given by

ag* + Bg* +¢& =0, 1)
where the coefficients in eq. (21) are given by

o= —48(a> + 8a + 24), B = 96(4 — a)(4 — 9a — 4a’),

(20)

£ = —6ad — a)*(4 + 2a)(a + 2). (22)
The solution of eq. (21) is given by
B 1 =
g=fedad)= |— -+ p* — 4oe. (23)
200 2u

It marks the boundary between regions C and B. The func-
tion fpc is shown as the bottom dashed line in Fig. 2.
The minima on the z axis are given by

aﬁef,(x =0,2)
0z B

Just like the corresponding equation for minima on the x
axis this equation can again be solved analytically and

0. (24)
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Fig. 2. Crystal orientation regions predicted by the improved pseudo ”

potential U, .. Shown are the analytical predictions f,p and fpc (dashed
lines) for the A/B boundary and the B/C boundary, respectively. Numerical
results for the location of the A/B boundary (full dots) and the B/C bound-
ary (full squares) are also shown.
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yields
2¢* + (2 + a)? 173

o= ¢ +Q2va |7 25)

22 + a)2q° - 2a — &)
The minima lose stability in x direction at
220, (x =0, 2)

ox?
2 +4a—d 1
- 4—q z3
104> 8(17 + 2a — a¥)q?
1+ = 0.
* [ Cra T G2t (26)

Again, eq. (26) is equivalent with a quadratic equation in ¢*
of the form (21) when using the location of the minima (25).
This time the coefficients in eq. (21) are given by

o= —12(a* — 22a + 96),
= —24(2 + a(5a® — 27a + 4),
¢ =3a4 — a)*(2 + a)®, 27)

and the solution of eq. (21) with these coefficients is given by

1 [
q:fAB(a):\/_E%_Z\/ﬁZ_4ae. (28)
This solution looks similar to eq. (23), but note the reversed
sign under the square root. The function (28) defines 5, the
boundary between regions A and B. It is shown as the upper
dashed line in Fi1g. 2.

Excellent explicit expressions for a =f 2(g) and a=
J52(g) can be obtained by first expanding the pseudo poten-
tial (15) to first order in a and then repeating the steps that
led to the conditions (20) and (26). For the expanded pseudo
potential we obtain

1 a q¢* aq? aq’ 2
U‘;‘f"}”z;—#<—+-q—+i>x2+(q2—a-i 22+q_5

2 4 16 2 r
2+a , l-a , 34-13a ,,
X[16 x4+ 3 z TR (29)

The explicit approximate expression for f ;5 is then given by

i— (§

fisl@= — (30

where & = 59¢* + 584 + 16, f = 25¢° — 10284° + 40364*

+ 1856¢* + 256, &= 36q* + 76¢>. The corresponding
expression for {5 is given by
-1 g
R 31
f C & + (ﬂ)1/25 ( )

where this time &, § and # are given by & = g* + 44¢® + 32,
and B = q® + 280¢° + 1744¢* + 2816¢* + 1024, and &=
32¢* — 244*. The accuracy of eqs (30) and (31) is better than
5% over the whole Mathieu stability region.

In region B the minima of the pseudo potential (11) are
not located on one of the axes of the trap. This means that
within the pseudo-potential approximation (11) a two-ion
crystal in region B forms an angle J/(a, g) with the z axis of
the trap that is different from 0 or n/2. The standard pseudo
potential does not predict region B, Thus, the improved
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pseudo potential ﬁeff predicts new properties of two-ion
crystals in the Paul trap. The pseudo potential (11) describes
new physics which is not contained in U¥},.

But how exactly does region B manifest itself in an experi-
ment that tries to verify its existence? First of all we have to
acknowledge that the pseudo potential (11), as any other
pseudo potential, describes only the time-averaged motion
on a time scale longer than one period of the driving field. If
the micro motion is taken into account, the two-ion crystal
is not locked into a stationary orientation ¥ but (apart from
a radial oscillation) executes a vibration around . This is
explained considering the egs (5) for the micro-motion
amplitudes ¢ and #. Since eq. (5) is a nonlinear transform-
ation from (x, z) to (&, #), the micro motion will possess
radial as well as angular components, and will in general
not correspond to a purely radial vibration. The angular
vibration about  together with the crystal nonalignment is
a tell-tale signal for the experimental identification of region
B. Since the pseudo potential resulted from averaging over
the micro motion, i can be calculated immediately from the
location of the pseudo-potential minimum for given a and g.
This result, too, can be compared with the experimentally
determined average orientation of a two-ion crystal and
provides a further test for the existence and the shape of
region B.

We are not aware of any attempts at an experimental
investigation of region B. In the absence of experimental
data the best we can do is to compare the analytical predic-
tions with numerical simulations. In order to model laser
cooling, we added damping terms to the equations of
motion (8) resulting in the following modified equations of
motion

X = —[a+2gcos 21X — X + X/p*

Z = 2[a + 2q cos 2t)1Z — yZ + Z/p°. (32)
First, we check the border-lines f,; and fy between the
three orientation regions. For y = 10™* we integrated the
set (32) using a numerical fourth-order Runge-Kutta scheme
[24] with constant step size. Since f,, marks the onset of
crystal nonalignment with the z axis, we solved the set (32)
on various constant-a paths in the Mathieu stability region.
We started the integration close to the left-hand stability
border. After obtaining a two-ion crystal, this configuration
was dragged [7] adiabatically toward f,, by increasing ¢
slowly over close to a million cycles of eq. (32) while keeping
a constant. During this procedure, the orientation of z was
constantly checked. As soon as the crystal started to mis-
align, we stopped the integration and marked the result with
a full dot in Fig. 2. This procedure was repeated for several
other a values (see full dots in Fig. 2). The agreement with
the analytical border f,; is very good. An analogous pro-
cedure was used to determine the border f5-. This time we
marked the points corresponding to the onset of reorien-
tation with a full square. Again, the numerical results are
very close to the analytical prediction.

Another “numerical experiment” concerned the computa-
tion of the average orientation angle . This time we chose
y = 1072, The task was to integrate eq. (32) numerically on
an equispaced grid with Aa = Ag =0.01 and to compute
numerically (a, q). The procedure was as follows. For a
given grid point (a;, g;) we selected a large y > 1072 and an




arbitrary set X, Z, X, Z of initial conditions and integrated
the set (32) long enough to obtain a stable two-ion crystal.
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minima according to
Y = arctan (z,/x,). 3D

Then, we adiabatically reduced y to its final value y = 1072,
This way we obtained initial conditions which correspond
to a two-ion crystal at y = 1073, Finally, we integrated eq.
(32) over one more micro-motion cycle to obtain ¥(a;, gx; f)
and computed its time average Y(a, ;, q). Figure 3(a) shows
the resulting Y values in the form of line segments at the
positions (g;, ¢;) in the (a, q) stability diagram of the Paul
trap. The inclinations of the line segments represent the
values of the average orientation angles i of the crystal in
x—z space. A region at the right-hand border of the stability
diagram is empty. The reason is that no two-ion crystals
exist in this region and ¥ is not defined [7]. In order to
compare the numerical results with the predictions accord-
ing to U,,, we have to determine the minima of U, in
region B. We have not yet found a way to do this analyti-
cally. Therefore, since this task has to be done numerically
there was no difference in computing time between finding
minima for ﬁeff or for the full pseudo potential U, ;.
Figure 3(b) shows the corresponding equilibrium angles
derived from the positions x,, and z,, of the pseudo-potential
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Fig. 3. Time-averaged field of orientation line segments for a two-ion
crystal with trap control parameters a and 4. (a) Numerical result, (b) orien-
tations obtained from the improved pseudo potential U,

Very good agreement is obtained between the predictions of
Y obtained from the exact dynamics (32) [see Fig. 3(a)] and
the predictions for i according to U, 7 [see Fig. 3(b)].

Neither the standard pseudo potential US), nor the
improved pseudo potential (11) predict the stability borders
to the right and on top of the Mathieu stability region. In
order to indicate this fact, Fig. 3(b) shows that on the basis
of U,,, alone, orientation angles can be defined extending
beyond the Mathieu stability region.

We also computed numerically the border-lines g, and
gpc predicted by the full pseudo potential (11) for the A/B
border and the B/C border, respectively. We found that
both £,z and fy. are identical with g, and g on the scale
of Fig. 2. This shows that U, s 18 an excellent approx-
imation to U ;.

We are confident that ion trapping experiments [3-6, 21,
227 or experiments with charged micro spheres [8] will soon
confirm the existence of region B.
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